Tuesday, 23 January 2018

تتحرك من المتوسط ، التدوين


المتوسط ​​المتحرك ونماذج التجانس الأسي. كخطوة أولى في التحرك خارج النماذج المتوسطة ونماذج المشي العشوائي ونماذج الاتجاه الخطي، يمكن استنباط أنماط واتجاهات غير تقليدية باستخدام نموذج متحرك أو متوسط ​​التمثيل. الافتراض الأساسي وراء نماذج المتوسط ​​والتجانس هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متغير ببطء وبالتالي فإننا نأخذ متوسطا محليا متحركا لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب ويمكن اعتبار ذلك بمثابة حل وسط بين النموذج المتوسط ونموذج المشي العشوائي بدون الانجراف ويمكن استخدام نفس الاستراتيجية لتقدير واستقراء الاتجاه المحلي وعادة ما يطلق على المتوسط ​​المتحرك نسخة ممسحة من السلسلة الأصلية لأن المتوسط ​​في المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية من خلال ضبط درجة تمهيد عرض المتوسط ​​المتحرك، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ونماذج المشي العشوائية أبسط نوع من نموذج المتوسط ​​هو. Simple بالتساوي المرجح المتوسط ​​المتحرك. التوقعات لقيمة Y في الوقت t 1 التي تتم في وقت t يساوي المتوسط ​​البسيط من الملاحظات م الأخيرة. هنا وفي أماكن أخرى سأستخدم الرمز Y-هات للوقوف على توقعات للسلسلة الزمنية Y التي تم إجراؤها في أقرب موعد ممكن من قبل نموذج معين ويتركز هذا المتوسط ​​في الفترة t 1 1، مما يعني أن تقدير فإن المتوسط ​​المحلي سيميل إلى التخلف عن القيمة الحقيقية للمتوسط ​​المحلي بحوالي m 2 2 وبالتالي فإننا نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو m 1 2 بالنسبة إلى الفترة التي يتم فيها حساب التنبؤ هذا هو مقدار الوقت الذي من شأنه أن التنبؤات تميل إلى تخلف نقاط تحول في البيانات على سبيل المثال، إذا كنت متوسط ​​القيم 5 الماضية، فإن التوقعات ستكون حوالي 3 فترات في وقت متأخر من الاستجابة لنقاط تحول لاحظ أنه إذا م 1، متوسط ​​نموذج المتوسط ​​المتحرك المتوسط ​​البسيط يساوي نموذج المشي العشوائي بدون نمو إذا كانت m كبيرة جدا مقارنة بطول فترة التقدير، فإن نموذج سما يعادل النموذج المتوسط ​​كما هو الحال مع أي معلمة لنموذج التنبؤ، لضبط قيمة كي n للحصول على أفضل ملاءمة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. هنا هو مثال لسلسلة التي يبدو أن تظهر تقلبات عشوائية حول متوسط ​​ببطء متغير أولا، دعونا نحاول لتناسب ذلك مع المشي العشوائي نموذج، وهو ما يعادل متوسط ​​متحرك بسيط من 1 term. The نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من الضوضاء في البيانات تقلبات عشوائية، فضلا عن إشارة المحلية يعني إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات. المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة متوسط ​​عمر البيانات في هذا التنبؤ هو 3 5 1 2، بحيث يميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التنبؤات لا تتحول حتى عدة فترات في وقت لاحق. لاحظ أن المدى الطويل، والتنبؤات طويلة الأجل من وزارة الدفاع سما إل هي خط أفقي مستقيم، تماما كما في نموذج المشي العشوائي وهكذا، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات ومع ذلك، في حين أن التوقعات من نموذج المشي العشوائي هي ببساطة مساوية لقيمة الملاحظة الأخيرة، والتنبؤات من فإن نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. حدود الثقة التي تحسبها ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ هذا من الواضح أنه ليس صحيحا للأسف، النظرية الإحصائية التي تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة لتوقعات الأفق الأطول على سبيل المثال، يمكنك إعداد جدول بيانات فيه نموذج سما سوف تستخدم للتنبؤ بخطوتين إلى الأمام و 3 خطوات إلى الأمام وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل توقعات h أوريزون، ومن ثم بناء فترات الثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا. الآن 5 فترات 9 1 2 إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزداد إلى 10.لاحظ أن التوقعات في الواقع تتخلف الآن عن نقاط التحول بنحو 10 فترات. كما أن كمية التجانس هي الأفضل لهذه السلسلة في ما يلي جدول يقارن إحصاءات الخطأ الخاصة بهم، بما في ذلك أيضا متوسط ​​3 فترات. نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أدنى قيمة ل رمز بهامش صغير على متوسطات المدى 3 و 9، إحصائياتهم الأخرى متطابقة تقريبا لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل أكثر قليلا من الاستجابة أو أكثر قليلا نعومة في التوقعات العودة إلى أعلى الصفحة. الألوان s الأسي بسيط تمهيد أضعافا مضاعفة أضعافا مضاعفة متوسط ​​المتوسط ​​المتحرك البسيط الموضح أعلاه يحتوي على الخاصية غير المرغوب فيها التي يتعامل معها ملاحظات k الأخيرة بالتساوي وبشكل كامل يتجاهل جميع الملاحظات السابقة بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، والحصول على أكثر من ذلك بقليل من الوزن الثاني من أحدث، والثاني الأكثر حداثة يجب الحصول على وزن أكثر قليلا من 3 أحدث، وهلم جرا بسيطة الأسي تمهيد نموذج سيس ينجز هذا. لاحظ يدل على ثابت تمهيد عدد بين 0 و 1 طريقة واحدة لكتابة النموذج هو تحديد سلسلة L التي تمثل المستوى الحالي أي القيمة المتوسطة المحلية للسلسلة كما يقدر من البيانات حتى الوقت الحاضر يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا. وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث تسيطر على القرب من قيمة محرف إلى أكثر إعادة سينت المراقبة التوقعات للفترة القادمة هي ببساطة قيمة ممهدة الحالية. على العكس من ذلك، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة. في النسخة الثانية، يتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق عن طريق كمية كسور. is الخطأ المحرز في الوقت t في النسخة الثالثة، والتنبؤ هو أي المتوسط ​​المتحرك المخصوم مع معامل الخصم 1. إن نسخة الاستكمال الداخلي لصيغة التنبؤ هي أبسط الاستخدامات إذا كنت تنفذ النموذج على جدول بيانات يناسبه في خلية واحدة ويحتوي على مراجع خلية تشير إلى التنبؤ السابق، الملاحظة، والخلية حيث يتم تخزين قيمة. ملاحظة أنه إذا كان 1، نموذج سيس ما يعادل نموذج المشي سيرا على الأقدام عشوائي نمو هوت إذا كان نموذج سيس يساوي النموذج المتوسط، على افتراض أن القيمة الملساء الأولى تم تعيينها مساوية لمتوسط ​​العائد إلى أعلى الصفحة. متوسط ​​عمر البيانات في التنبؤات الأسية البسيطة - تمهيد هو 1 النسبية إلى الفترة التي يتم حساب التنبؤ بها ليس من المفترض أن تكون واضحة، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية وبالتالي، فإن متوسط ​​التوقعات المتحركة البسيطة يميل إلى التخلف عن نقاط التحول بنحو 1 فترات على سبيل المثال، عند 0 5 الفاصل الزمني هو فترتين عندما يكون 0 2 الفارق الزمني 5 فترات عندما يكون 0 1 الفارق الزمني 10 فواصل وهكذا بالنسبة لعمر متوسط ​​معين أي مقدار الفارق الزمني فإن التنبؤ الأسي البسيط للتلطيف سيس متفوق إلى حد ما على التحرك البسيط متوسط ​​توقعات سما لأنه يضع وزنا أكبر نسبيا على الملاحظة الأخيرة - فهو أكثر استجابة قليلا للتغيرات التي تحدث في الماضي القريب على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 0 2 على حد سواء لديها متوسط ​​العمر من 5 ل دا تا في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما، وفي الوقت نفسه فإنه لا ننسى تماما القيم أكثر من 9 فترات القديمة، كما هو مبين في هذا الرسم البياني. أية ميزة أخرى من فإن نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد تتغير باستمرار بحيث يمكن تحسينها بسهولة باستخدام خوارزمية حلالا لتقليل متوسط ​​الخطأ الوسطي وتبين القيمة المثلى لنموذج سيس لهذه السلسلة أن يكون 0 2961، كما هو مبين هنا. متوسط ​​عمر البيانات في هذه التوقعات هو 1 0 2961 3 4 فترات، وهو مماثل للمتوسط ​​المتحرك البسيط لمدة 6. التوقعات على المدى الطويل من نموذج سيس هي خط مستقيم أفقي كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة للراند أوم نموذج المشي يفترض أن سلسلة يمكن التنبؤ بها إلى حد ما أكثر من نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما حتى نظرية إحصائية نماذج أريما يوفر أساسا سليما لحساب فترات الثقة ل نموذج سيس على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو مصطلح 1 ما، وليس هناك مصطلح ثابت يعرف باسم أريما 0،1،1 نموذج دون ثابت معامل ما 1 في نموذج أريما يتوافق مع الكمية 1 في نموذج سيس على سبيل المثال، إذا كنت تناسب أريما 0،1،1 نموذج دون ثابت لسلسلة تحليلها هنا، فإن معامل ما 1 المقدرة تبين أن 0 7029، وهو تقريبا تقريبا واحد ناقص 0 2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس للقيام بذلك، ما عليك سوى تحديد نموذج أريما بفروق نونزاسونال واحدة ومدة ما 1 مع ثابت، أي نموذج أريما 0،1،1 مع ثابت سوف التوقعات على المدى الطويل ثم يكون الاتجاه الذي يساوي الاتجاه المتوسط ​​لوحظ على مدى فترة التقدير بأكملها لا يمكنك القيام بذلك جنبا إلى جنب مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عندما يتم تعيين نوع النموذج إلى أريما ومع ذلك، يمكنك إضافة ثابت طويلة إلى نموذج بسيط للتجانس الأسي مع أو بدون تعديل موسمية باستخدام خيار تعديل التضخم في إجراء التنبؤ يمكن تقدير معدل النمو المناسب لنسبة التضخم في كل فترة على أنه معامل الانحدار في نموذج اتجاه خطي مجهز بالبيانات في جنبا إلى جنب مع التحول اللوغاريتم الطبيعي، أو أنه يمكن أن تستند إلى معلومات أخرى مستقلة بشأن آفاق النمو على المدى الطويل العودة إلى أعلى الصفحة. الخطية s الخطي أي ضعف الأسي تمهيد. نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا ل 1-خطوة قبل التوقعات عندما تكون البيانات نوي نسبيا ويمكن تعديلها لدمج اتجاه خطي ثابت كما هو مبين أعلاه ماذا عن الاتجاهات قصيرة الأجل إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة إلى وتوقع أكثر من 1 فترة المقبلة، ثم تقدير الاتجاه المحلي قد يكون أيضا قضية ويمكن تعميم نموذج التمهيد الأسي بسيط للحصول على خطية الأسية تمهيد نموذج ليس الذي يحسب التقديرات المحلية من كل من المستوى والاتجاه. أبسط الاتجاه متغيرة الوقت النموذج هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم اثنين من سلسلة سلسة مختلفة التي تتمحور في نقاط مختلفة في الوقت المحدد ويستند صيغة التنبؤ على استقراء خط من خلال المركزين وهناك نسخة أكثر تطورا من هذا النموذج، هولت s، هو نوقشت أدناه. يمكن التعبير عن شكل جبري من براون s الخطي الأسي تمهيد نموذج، مثل ذلك من نموذج تمهيد الأسي بسيط، في عدد من مختلف ولكن ه الأشكال المتكافئة عادة ما يعبر عن الشكل القياسي لهذا النموذج على النحو التالي تدل S تدل على سلسلة سلسة منفردة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y وهذا هو، وتعطى قيمة S في الفترة t من قبل. أذكر أنه في ظل تمهيد الأسي بسيط، وهذا سيكون التنبؤ ل Y في الفترة ر 1 ثم اسمحوا S تدل على سلسلة سلسة تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط باستخدام نفسه لسلسلة S. Finally، والتوقعات ل يك تك لأي k 1. ويعطي هذا العائد e 1 0 أي غش قليلا، والسماح للتنبؤ الأول يساوي الملاحظة الأولى الفعلية، و e 2 Y 2 Y 1 وبعد ذلك يتم توليد التنبؤات باستعمال المعادلة أعلاه ينتج هذا القيم المجهزة نفسها كما الصيغة التي تستند إلى S و S إذا تم بدء هذه الأخيرة باستخدام S 1 S 1 Y 1 يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمي. الخطي S الخطي الأسي Smoothing. Brown s يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أن يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب المستوى والاتجاه لا يسمح لها أن تختلف في معدلات مستقلة هولت s ليس نموذج يتناول هذه المسألة من خلال تضمين اثنين من ثوابت تمهيد، واحدة لمستوى واحد للاتجاه في أي وقت t، كما هو الحال في نموذج براون s، وهناك تقدير L ر من المستوى المحلي وتقدير T t للاتجاه المحلى هنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة فى الوقت t والتقديرات السابقة لمستوى واتجاه المعادلتين اللتين تنطبقان على تمهيد أسي لها بشكل منفصل. إذا كان المستوى المقدر والاتجاه في الوقت t-1 هما T t 1 و T t-1 على التوالي، فإن التنبؤات Y t التي كان من الممكن أن تكون قد أجريت في الوقت t-1 تساوي L t-1 T t-1 عندما يلاحظ القيمة الفعلية، يتم حساب المستوى بشكل متكرر عن طريق الاستكمال الداخلي بين Y t والتنبؤ به L t-1 T t-1 باستخدام الأوزان و 1. ويمكن تفسير التغير في المستوى المقدر وهو L t L 1 على أنه قياس صاخب ل الاتجاه في الوقت t يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t L t 1 والتقدير السابق للاتجاه T t-1 باستخدام أوزان و 1. إن تفسير ثابت تجانس الاتجاه يشبه ثابت ثابت التمهيد. النماذج ذات القيم الصغيرة تفترض تغير الاتجاه فقط ببطء شديد مع مرور الوقت، في حين أن النماذج ذات الحجم الأكبر تفترض أنها تتغير بسرعة أكبر ويعتقد نموذج مع كبير أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة قبل العودة إلى أعلى من ثوابت التجانس ويمكن تقديرها بالطريقة المعتادة من خلال تقليل متوسط ​​الخطأ المئوي للتنبؤات ذات الخطوة الأولى عندما يتم ذلك في ستاتغرافيكس، تشير التقديرات إلى أن 03048 و 0 008 القيمة الصغيرة جدا يعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل قياسا على فكرة متوسط ​​عمر البيانات المستخدمة في تقدير t هو المستوى المحلي للسلسلة، متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1، وإن لم يكن يساوي بالضبط في هذه الحالة التي تبين أن يكون 1 0 006 125 هذا هو إس عدد دقيق جدا حيث أن دقة تقدير إيسن t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حجم حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير الاتجاه مؤامرة التوقعات ويبين الشكل أدناه أن نموذج ليس يقدر اتجاها محليا أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج الاتجاه سيس، كما أن القيمة المقدرة تكاد تكون مطابقة للاتجاه الذي يتم الحصول عليه عن طريق تركيب نموذج سيس مع الاتجاه أو بدونه ، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت مقلة العين هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحول إلى أسفل في نهاية سلسلة و في حدث وقد تم تقدير المعلمات من هذا النموذج عن طريق تقليل الخطأ التربيعي من 1-خطوة إلى الأمام التنبؤات، وليس التنبؤات على المدى الطويل، وفي هذه الحالة الاتجاه لا تجعل الكثير من الفرق إذا كان كل ما كنت تبحث في 1 - step قبل الأخطاء، كنت لا ترى الصورة الأكبر من الاتجاهات على القول 10 أو 20 فترات من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط أساس أقصر لتقدير الاتجاه على سبيل المثال، إذا اخترنا تعيين 0 1، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، مما يعني أننا نحسب متوسط ​​الاتجاه خلال الفترات العشرين الأخيرة أو نحو ذلك هنا s ما يبدو مؤامرة توقعات إذا وضعنا 0 1 مع الحفاظ على 0 3 وهذا يبدو بديهية معقولة لهذه السلسلة، على الرغم من أنه من المحتمل أن خطورة لاستقراء هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إرور ستاتس هنا مقارنة نموذجية f أو النموذجين المبينين أعلاه فضلا عن ثلاثة نماذج سيس تبلغ القيمة المثلى لنموذج سيس حوالي 0 3، ولكن يتم الحصول على نتائج مماثلة مع استجابة أكثر قليلا أو أقل على التوالي مع 0 5 و 0 2. A هولت إكس خطي تجانس مع ألفا 0 3048 وبيتا 0 008. B هولت خ الخطية تجانس مع ألفا 0 3 وبيتا 0 1. C تمهيد الأسي بسيطة مع ألفا 0 5. D تمهيد الأسي بسيط مع ألفا 0 3. E تمهيد الأسي بسيط مع ألفا 0 2 . احصائيات هي متطابقة تقريبا، لذلك نحن حقا يمكن أن تجعل ر الاختيار على أساس 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات علينا أن نراجع مرة أخرى على اعتبارات أخرى إذا كنا نعتقد بقوة أنه من المنطقي أن قاعدة الحالية تقدير الاتجاه على ما حدث على مدى ال 20 فترة الماضية أو نحو ذلك، يمكننا أن نجعل حالة لنموذج ليس مع 0 3 و 0 1 إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، ثم واحدة من نماذج سيس قد يكون من الأسهل أن يفسر، وسوف يعطي أيضا المزيد من ميدل التنبؤات على الطريق على مدى 5 أو 10 فترات القادمة العودة إلى أعلى الصفحة. أي نوع من الاستقراء الاتجاه هو أفضل الأفقي أو الخطي تشير الأدلة التجريبية أنه إذا كانت البيانات قد تم تعديلها إذا لزم الأمر للتضخم، ثم قد يكون من غير الحكمة استقراء الاتجاهات الخطية قصيرة الأجل بعيدا جدا في الاتجاهات المستقبلية قد تتراجع اليوم بوضوح في المستقبل بسبب أسباب مختلفة مثل تقادم المنتج وزيادة المنافسة والانكماش الدوري أو التحولات في صناعة لهذا السبب، الأسي بسيط فإن التنعيم غالبا ما يؤدي إلى خروج عينة أفضل مما يمكن توقعه على خلاف ذلك، على الرغم من استقراء الاتجاه الأفقي الساذج. وغالبا ما تستخدم تعديلات الاتجاه المعاكسة لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات اتجاهها الاتجاه المعاكسة يمكن تطبيق نموذج ليس كحالة خاصة لنموذج أريما، على وجه الخصوص، نموذج أريما 1،1،2.ومن الممكن حساب فترات الثقة أرو والتنبؤات الطويلة الأجل التي تنتجها نماذج التمهيد الأسي من خلال اعتبارها حالات خاصة لنماذج أريما حذار ليس كل البرامج بحساب فترات الثقة لهذه النماذج بشكل صحيح عرض فترات الثقة يعتمد على i خطأ رمز من النموذج، إي نوع من تمهيد بسيطة أو خطية إي قيمة s من ثابت التمهيد ق و الرابع عدد الفترات المقبلة كنت التنبؤ بشكل عام، والفواصل انتشرت بشكل أسرع كما يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما الخطية بدلا من بسيطة تمهيد يتم مناقشة هذا الموضوع كذلك في قسم نماذج أريما من الملاحظات العودة إلى أعلى الصفحة. سوف غالبا ما تواجه تدوين الجمع عند النظر في، أو إجراء، التحليل الإحصائي للبيانات البيولوجية تخيل أنك تقوم بإجراء تجربة بسيطة مقارنة وزن مجموعتين من الفئران، واحدة التي تم تغذية نظام غذائي عالي الدهون ومجموعة السيطرة على نظام غذائي طبيعي طالب الدراسات العليا كنت تعمل ث يقول إيث أنه يمكنك حساب متوسط ​​أو متوسط ​​الوزن لكل السكان على النحو التالي. ماذا يقول هذا التدوين في الواقع لفهم ذلك، يجب أن تعرف كيفية قراءة التوليف تدوين. فهم التجميع تدوين. ونحن سوف تركز فقط على فهم التوليف تدوين ل وعلوم الحياة، فمن الأهم أن تكون قادرة على اتخاذ تدوين الجمع التي أعطيت لك ومعرفة ما يعنيه مما هو عليه للتعبير عن مبلغ معين في الجمع نوتاتيون. يستخدم التدوين تدوين لتمثيل مضغوط مجموع الأرقام ل على سبيل المثال، لنفترض أننا نريد أن نكتب بشكل مضغوط المجموع التالي 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. عادة ما تسمى مجموعات الأرقام مثل الرقم أعلاه سلسلة لكتابة سلسلة أعلاه بشكل مضغوط، نحن استخدام التدوين التوليفي التالي. للفهم كيف يمثل هذا التدوين المبلغ أعلاه، نقوم بكسر التدوين التراكمي لأسفل إلى قطع. الشروط الواجب جمعها. الصطلحات التي سنقوم بها عادة ما تعتمد على فهرس المجموع وهذا هو، كما الهند الزيادات السابقة من الحد الأدنى إلى الحد الأعلى، المصطلحات في السلسلة عادة ما تتغير في هذه الحالة، ونحن تلخيص الأرقام ال 15 الأولى، وبالتالي فإن المؤشر نفسه يمثل الأرقام التي تلخص. النظر في تدوين الملخص التالي. عن قوسين أوضح أن كلا المصطلحين هما جزء من المجموع في هذه الحالة، يبدأ الفهرس i عند 0 وينتهي عند 4 يمكننا كتابة المصطلحات في المجموع حيث يزيد من 0 إلى 4 عن طريق استبدال كل قيمة i ثم تلخيص الأرقام على النحو التالي. 5 2 0 5 2 1 5 2 2 5 2 3 5 2 4. مثال آخر يتضمن تدوين التوليف يعطى من قبل. يمكننا أن نأخذ هذا التدوين المضغوط وكتابة المصطلحات في المجموع كما. 1 2 1 2 2 1 3 2 1 4 2 1 5 2 1 6 2 1. المبالغ التي نظرنا إليها حتى الآن هي مبالغ محدودة بحدود علوية وسفلية محدودة ويمكن أيضا أن تكون المبالغ لانهائية مثل المؤشر العلوي يساوي على سبيل المثال، سوم تعطى by. means لتجميع عدد لا حصر له من المصطلحات as. The قيمة مبلغ لانهائي قد يكون في هذه الحالة المجموع هو لانهائية هذا هو موضوع أكثر حساسية التي ستتم مناقشتها في قسم لاحق. استخدام تدوين الجمع لتمثيل الحساب الحسابي. يمكننا أيضا استخدام التدوين التجميعي لتمثيل الوسط الحسابي أو متوسط ​​مجموعة بيانات معينة على وجه التحديد، إذا أخذنا عينات من عدد السكان. يمكننا التعبير عن المتوسط ​​كما. على سبيل المثال، إذا كنا عينة 5 أفراد في مجتمع والعثور على أوزانهم لتكون 134، 203، 156، 115، و 189 جنيه، نحسب متوسط ​​الوزن كما. باستخدام تدوين المنتج لحساب هندسي متوسط. مثل الجمع تدوين، يتم استخدام تدوين المنتج أيضا لكتابة مضغوط المنتج من العديد شروط لاستخدام تدوين المنتج نستبدل لتمثيل تشغيل المجموع مينغ مع لتمثيل عملية الضرب وبعبارة أخرى، سيتم ضرب المصطلحات بدلا من لخص ل example. is طريقة بسيطة للدلالة 1 2 ن 1 ن يمكن أن تستخدم تدوين المنتج لتمثيل المتوسط ​​الهندسي على وجه الخصوص، فإن المتوسط ​​الهندسي من قيم العينة الإیجابیة n یتم حسابھا علی النحو التالي: باستخدام نموذج الأوزان أعلاه، نجد أن متوسط ​​الوزن الھندسي ھو. نحاول الآن بعض المشکلات التي تختبر معرفتك بالترکیز الریاضي. 8 4 تحریك متوسطات النماذج. بدلا من استخدام القیم السابقة ل المتغير المتوقع في الانحدار، يستخدم نموذج المتوسط ​​المتحرك أخطاء التنبؤ السابقة في نموذج يشبه الانحدار. يك أند ثيتا e ثيتا e دوتس ثيتا e. where و هو الضوضاء البيضاء ونحن نشير إلى هذا باعتباره نموذج ما q بالطبع، نحن لا نلاحظ قيم إت، لذلك ليس حقا الانحدار بالمعنى المعتاد. لاحظ أن كل يمكن اعتبار قيمة يت كمتوسط ​​متحرك مرجح لأخطاء التنبؤ القليلة الماضية ومع ذلك، لا ينبغي الخلط بين متوسطات النماذج المتحركة مع تمهيد المتوسط ​​المتحرك الذي نوقش في الفصل 6 يستخدم نموذج المتوسط ​​المتحرك للتنبؤ بالقيم المستقبلية بينما يتحرك متوسط ​​التحريك يستخدم لتقدير دورة الاتجاه للقيم السابقة. التركيبة 8 6 مثالان للبيانات المستمدة من النماذج المتوسطة المتحركة بمعلمات مختلفة اليسار ما 1 مع يت 20 و 0 8e t-1 رايت ما 2 مع يتيت - e t-1 0 8e t-2 في كلتا الحالتين، يتم توزيع إت عادة الضوضاء البيضاء مع متوسط ​​الصفر والتباين واحد. فيغور 8 6 يظهر بعض البيانات من نموذج ما 1 ونموذج ما 2 تغيير المعلمات theta1، النقاط، نتائج ثيتاق في أنماط سلسلة زمنية مختلفة كما هو الحال مع نماذج الانحدار الذاتي، والتباين من فإن مصطلح الخطأ وسوف تغير فقط حجم السلسلة، وليس الأنماط. ومن الممكن أن يكتب أي ثابتة أر نموذج P كنموذج ما إنفتي على سبيل المثال، وذلك باستخدام استبدال المتكررة، يمكننا إثبات هذا لنموذج أر 1. تبدأ في phi1y و phi1 phi1y e و phi1 2y phi1 e و phi1 3y phi1 2e phi1 ه و نص النهاية. المقدمة -1 phi1 1، قيمة phi1 k سوف تحصل أصغر كما يحصل ك أكبر حتى نحصل في نهاية المطاف. يت و phi1 e phi1 2 e phi1 3 e cdots. an ما إنفي process. The النتيجة العكسية يحمل إذا كنا نفرض بعض القيود على المعلمات ما ثم يسمى نموذج ما عكسية وهذا هو، أننا يمكن أن يكتب أي عملية ما q قابل للانهيار كما إن إنفتي process. Invertible نماذج أر ليست ببساطة لتمكيننا من تحويل من نماذج ما إلى نماذج أر لديهم أيضا بعض الخصائص الرياضية التي تجعلها أسهل للاستخدام في الممارسة. قيود العوائق تشبه القيود ستاتيوناريتي. لما 1 نموذج -1 theta1 1. فور ما 2 نموذج -1 theta2 1، theta2 theta1 -1، theta1 - theta2 1. أكثر تعقيدا الظروف عقد ل q ge3 مرة أخرى، R سوف تأخذ الرعاية من هذه القيود عند تقدير النماذج.

No comments:

Post a Comment